RAY MODEL OF LIGHT CHEATSHEET

Light is taken in by the object

REFLECTION

DEFINITION

Bouncing of light rays when they hit a (opaque) surface

2 TYPES OF REFLECTION

TYPE OF REFLECTION	TYPE OF SURFACE	BEHAVIOUR OF LIGHT RAYS	CHARACTERISTICS OF THE IMAGE
REGULAR/ SPECULAR REFLECTION	Smooth (even) surface	Light rays that are parallel to each other remain parallel after bouncing off the smooth surface.	Clear and undistorted image formed
IRREGULAR/ DIFFUSE REFLECTION	Rough (uneven) surface	Light rays that are parallel to each other are reflected in many different directions by the uneven surface.	No image formed/ unclear and distorted image formed

TYPE OF MIRROR	PLANE MIRROR	CONVEX MIRROR	CONCAVE MIRROR	
SURFACE	Flat	Curved outward	Curved inward	
	Virtual			
	Upright			
	Laterally inverted			
CHARACTERISTIC OF MIRROR IMAGE	Same size as the object	Smaller size than the object	Larger size than the object	
OF PHRROR IPIAGE	Distance of object and image from the plane mirror is equal	Distance of object and image from the convex mirror is not equal	Distance of object and image from the concave mirror is not equal	
FIELD OF VISION	Moderate	Wider	Narrower	
EXAMPLE	•Periscope	•Blind corner mirror • Security mirror	Dentist mirror Cosmetic mirror	

3 Light travels at a speed of 3 x 10⁸ m/s in a vacuum

Bouncing of light ray

Opaque Translucent Transparent

RAY MODEL OF LIGHT CHEATSHEET

REFLECTION DIAGRAMS

3 STEPS

- 1 Image
 - Drawn with dotted lines
 - Follow plane mirror image rules
- 2 Ray from image to eye/observer
 - Reflected ray (partially dotted)
- **3** Ray from object to plane
 - Incident ray

🖉 DRAW NORMAL 📗

In dotted lines and perpendicular to plane/mirror

 \heartsuit **RECALL** Law of reflection: Angle of incidence = Angle of reflection ($\angle i = \angle r$)

REFRACTION

Bending of light as it travels from one medium to another of different **DEFINITION** optical density.

From optically less	From optically denser to	SPECIAL CASE
dense to optically denser medium [Air to glass]	optically less dense medium [Glass to air]	Incident ray is perpendicular to boundary of medium
Speed of light decreases	Speed of light increases	Since, $\angle i = 0^\circ$, $\angle r = 0^\circ$.
Refracted ray bends more towards normal	Refracted ray bends more away from normal	Thus, no refraction of light

REFRACTION DIAGRAMS

3 STEPS

- Image*
 - Drawn with dotted lines
 - Same size and shape as object
- 2 Ray from image to eye
- Ray from object to boundary

DRAW NORMAL In dotted lines and perpendicular to boundary

Air Water [Optically denser1

Normal

A TAKE NOTE

*Observer in less dense medium→image appears above object but closer to boundary Observer in denser medium → image appears above object but further from boundary

COLOUR SPECTRUM OF WHITE LIGHT

White light can split into its seven coloured components (ROYGBIV) by a glass prism. This splitting process is known as dispersion.

	ANSWERING TECHNIQUE	
Compare Optical Density	Dispersion of light occurs when white light travels from an optically less dense medium , such as <u>air</u> , to an optically denser medium , such as <u>glass prism</u> .	
Describe change in speed of light	The speed of each coloured component of light decreases differently,	
	causing each refracted coloured component of light to bend differently towards the normal due to refraction of light.	

