RAY MODEL OF LIGHT CHEATSHEET Light is taken in by the object ## **REFLECTION** **DEFINITION** Bouncing of light rays when they hit a (opaque) surface # 2 TYPES OF REFLECTION | TYPE OF REFLECTION | TYPE OF
SURFACE | BEHAVIOUR OF
LIGHT RAYS | CHARACTERISTICS
OF THE IMAGE | |-------------------------------------|------------------------------|---|--| | REGULAR/
SPECULAR
REFLECTION | Smooth
(even)
surface | Light rays that are parallel
to each other remain
parallel after bouncing off
the smooth surface. | Clear and
undistorted
image formed | | IRREGULAR/
DIFFUSE
REFLECTION | Rough
(uneven)
surface | Light rays that are parallel to
each other are reflected in
many different directions by
the uneven surface. | No image
formed/ unclear
and distorted
image formed | | TYPE OF MIRROR | PLANE MIRROR | CONVEX MIRROR | CONCAVE MIRROR | | |--------------------------------|---|---|--|--| | SURFACE | Flat | Curved outward | Curved inward | | | | Virtual | | | | | | Upright | | | | | | Laterally inverted | | | | | CHARACTERISTIC OF MIRROR IMAGE | Same size
as the object | Smaller size than the object | Larger size
than the object | | | OF PHRROR IPIAGE | Distance of object and image from the plane mirror is equal | Distance of object
and image from
the convex mirror
is not equal | Distance of object
and image from
the concave mirror
is not equal | | | FIELD OF VISION | Moderate | Wider | Narrower | | | EXAMPLE | •Periscope | •Blind corner mirror • Security mirror | Dentist mirror Cosmetic mirror | | 3 Light travels at a speed of 3 x 10⁸ m/s in a vacuum Bouncing of light ray Opaque Translucent Transparent # RAY MODEL OF LIGHT CHEATSHEET ### **REFLECTION DIAGRAMS** 3 STEPS - 1 Image - Drawn with dotted lines - Follow plane mirror image rules - 2 Ray from image to eye/observer - Reflected ray (partially dotted) - **3** Ray from object to plane - Incident ray 🖉 DRAW NORMAL 📗 In dotted lines and perpendicular to plane/mirror \heartsuit **RECALL** Law of reflection: Angle of incidence = Angle of reflection ($\angle i = \angle r$) #### REFRACTION Bending of light as it travels from one medium to another of different **DEFINITION** optical density. | From optically less | From optically denser to | SPECIAL CASE | |--|---|--| | dense to optically denser
medium [Air to glass] | optically less dense
medium [Glass to air] | Incident ray is perpendicular to boundary of medium | | Speed of light decreases | Speed of light increases | Since, $\angle i = 0^\circ$, $\angle r = 0^\circ$. | | Refracted ray bends more towards normal | Refracted ray bends
more away from normal | Thus, no refraction of light | #### **REFRACTION DIAGRAMS** **3 STEPS** - Image* - Drawn with dotted lines - Same size and shape as object - 2 Ray from image to eye - Ray from object to boundary DRAW NORMAL In dotted lines and perpendicular to boundary # Air Water [Optically denser1 Normal ### **A** TAKE NOTE *Observer in less dense medium→image appears above object but closer to boundary Observer in denser medium → image appears above object but further from boundary #### COLOUR SPECTRUM OF WHITE LIGHT White light can split into its seven coloured components (ROYGBIV) by a glass prism. This splitting process is known as dispersion. | | ANSWERING TECHNIQUE | | |-----------------------------------|---|--| | Compare Optical Density | Dispersion of light occurs when white light travels from an optically less dense medium , such as <u>air</u> , to an optically denser medium , such as <u>glass prism</u> . | | | Describe change in speed of light | The speed of each coloured component of light decreases differently, | | | | causing each refracted coloured component of light to bend differently towards the normal due to refraction of light. | |