

THE PIQUE LAB LEARNING CENTRE

Primary School Science Programme

MATTER TECHNIQUES MASTERCLASS

Answer Booklet

Name:	 	 	
Class:			

TOPICS COVERED

Topic	Title	Page
1	Fundamental Questions	1
2	Question Type 1(Air spaces between solids)	2
3	Question Type 2(Size of the solid)	2
4	Question Type 3(Syringe question)	2
5	Question Type 4(Tin can question)	2
6	Question Type 5(Inverted cup question)	3
7	Question Type 6(Funnel question)	3
8	Question Type 7(Inflating a balloon in a bottle question)	4
9	Question Type 8(Adding and removing matter)	4
10	Question Type 9(Determining the states of matter)	4
11	Question Type 10(Changes in mass and/or volume of substances)	5

MATTER TECHNIQUES MASTERCLASS

FUNDAMENTAL QUESTIONS

Qn	Answer		
Q1	3		
Q2	3		
Q3	The balance will tilt downwards towards the side with 14 ping		
	pong balls. When the beach ball was deflated with a needle, <u>air in</u>		
	the beach ball escaped. Since air is matter, which has mass, the		
	deflated beach ball would have a <u>smaller mass</u> than the 14 ping		
	pong balls.		
Q4a	55 cm ³		
b	(Hint: Refer to Page <u>3</u> of Matter Fill-in-the-blanks notes)		
	Object Y is not fully submerged in water. Thus, the increase in		
	water level represents the volume of the part of object Y that is		
	submerged in water and not the part of object Y that is above the		
	water.		
Q5a	The pebbles occupied space in the pitcher and displaced the		
	water, causing the water level in the pitcher to increase.		
b	Lisa could fill a bottle with stones and place it at the bottom of the		
	water tank.		
С	 The object must be waterproof. 		
	2) The object must sink in water.		
Q6	There were <u>air spaces</u> in the sponge. When weights were placed		
	on the plunger, the <u>air in the sponge, which does not have a</u>		
	definite volume, was compressed.		

QUESTION TYPE 1: AIR SPACES BETWEEN SOLIDS

Qn	Answer
Q7	(Hint: Refer to Page <u>3</u> , Experiment <u>1</u> of Matter colour notes)
	There are air spaces between the plastic beads. As water does not have a definite shape, water can enter to displace the air (causing the total volume of the contents in cylinder 1 to be less than 50 ml).

QUESTION TYPE 2: SIZE OF THE SOLID

Qn	Answer		
Q8	2		
Q9	3		
Q10a	Ben would observe bubbles in the water.		
b	Soil C has the most amount of air spaces, followed by soil A and		
	soil B.		

QUESTION TYPE 3: SYRINGE QUESTION

Qn	Answer
Q11	1
Q12	The air in the syringe does not have a definite volume and can
	be compressed . Thus, John was able to push in the plunger till
	the 5 cm mark. However, <u>air is a matter and would still occupy</u>
	space inside the syringe . Thus, John could not push in the
	plunger till the 0 cm mark.

QUESTION TYPE 4: TIN CAN QUESTION

Qn	Answer
Q13	(Hint: Refer to Page <u>5</u> , Experiment <u>4</u> , Question <u>3</u> of Matter colour
	notes)
	The tin in set-up B has two holes while the tin in set-up A has one
	hole. With two holes in the lid of the tin for set-up B, the air from
	the surroundings will enter the tin through one hole to occupy the
	space of the condensed milk that is escaping/ displace the
	condensed milk through the other hole.

QUESTION TYPE 5: INVERTED CUP QUESTION

Qn	Answer		
Q14	(Hint: Refer to Page <u>6</u> , Experiment <u>5</u> , Question <u>1</u> of Matter colour		
	notes)		
	<u>Air occupies space</u> in the glass and <u>cannot escape</u> . While air in		
	the glass can be compressed initially to allow some water to		
	enter, it could not be compressed any further . As such, water		
	would not be able to fill up the cup completely to reach the		
	paper at the base of the glass, keeping the paper dry.		
Q15a	i) Air occupied space in the cup.		
	ii) Air does not have a definite volume and can be		
	compressed.		
b	/ Hole		
	Ball .		
	Water		

QUESTION TYPE 6: FUNNEL QUESTION

Qn	Answer
Q16a	(Hint: Refer to Page <u>7</u> , Experiment <u>6</u> , Question <u>1</u> of Matter colour
	notes)
	There is a stopper placed between flask A and the funnel. Thus,
	the air, which occupies space in flask A, could not escape .
	While the air in flask A can be compressed initially to allow some
	oil to enter, it could not be compressed any further .
b	(Hint: Refer to Page <u>7</u> , Experiment <u>6</u> , Question <u>2</u> of Matter colour
	notes)
	There is no stopper placed between flask B and the funnel. Thus,
	the air in flask B can escape through the gap formed at the
	mouth of flask B. This allows all the oil to enter flask B to occupy
	the space previously taken up by the air/ displace the air.

QUESTION TYPE 7: INFLATING A BALLOON IN A BOTTLE QUESTION

Qn	Answer			
Q17a	(Hint: Refer to Page <u>8</u> , Experiment <u>7</u> , Question <u>1</u> of Matter colour			
	notes)			
	Air <u>occupies space</u> in the bottle <u>and cannot escape</u> . While air in			
	the bottle can be compressed initially to allow some air to enter			
	the balloon, it could not be compressed any further .			
b	(Hint: Refer to Page <u>8</u> , Experiment <u>7</u> , Question <u>2</u> of Matter colour			
	notes)			
	She can poke a hole at the base of the bottle. This allows the air			
	in the bottle to escape through the hole, allowing the balloon to			
	be inflated to fill the bottle up fully to occupy the space			
	previously taken up by the air that has escaped/ displace the			
	air.			

QUESTION TYPE 8: ADDING & REMOVING MATTER

Qn	Answer
Q18	1
Q19	1
Q20a	350 cm ³
b	Air does not have a definite volume.
С	Decrease. When air was removed from the ball, there was less air
	in the football. Since air is matter, which has mass, the mass of the
	football decreased.

QUESTION TYPE 9: DETERMINING THE STATES OF MATTER

Qn	Answer
Q21	4
Q22	Choose: Substance Z.
	Use data: 30 °C is higher than its boiling point.
	Explain data: Thus, substance Z was in the gaseous state at 30 °C,
	which would not have a definite volume and can be compressed
	into a container of a capacity smaller than its volume.

QUESTION TYPE 10: CHANGES IN MASS AND/OR VOLUME OF SUBSTANCES

Qn	Answer
Q23	2
Q24	2